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abstract. This is a study note on the heat kernel proof of the Atiyah-
Singer index theorem à la Getzler [2]. Main references consulted were Roe
[5] and Freed [3].

1 PREL IM INAR I E S

1.1 SET-UP. LetM be a compact orientedmanifoldM with dimensionn. Letд be a

riemannian metric onM . Let FrSO(TM) be the principal SO(n)-bundle of oriented

frames of the tangent bundleTM ofM . We assume thatM admits a spin structure,

that is, there is a principal Spin(n)-bundle PSpin(M) overM and a bundle map

ρ : PSpin(M) → FrSO(TM)

such that

ρ(s · p) = π (s) · ρ(p),

where p ∈ PSpin(M), s ∈ Spin(n), and π : Spin(n) → SO(n) is the spin double

cover.

Let Cl(TM) denote the (complex) Clifford bundle overM ; its fiber over x ∈ M

is the Clifford algebra Cl(TxM) constructed from the tangent space TxM and the

metric. Using the spin structure and the Borel mixing construction, we can always

construct a vector bundle E → M whose fiber over x ∈ M is a Clifford module

over Cl(TxM). Assume that the bundle E is also equipped with a hermitian metric

( , ). We can find a connection ∇ on E such that, for any vector fields X ,Y on M

and sections σ1,σ2 of E,

(i) the Clifford action c : Cl(TM) → End(E) is skew-adjoint,

(c(X )σ1,σ2) = −(σ1, c(X )σ2),

(ii) the connection ∇ is compatible with the hermitian metric,

X (σ1,σ2) = (∇Xσ1,σ2) + (σ1,∇Xσ2),
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(iii) the connection ∇ is compatible with the riemannian connection (also de-

noted by ∇) onM ,

[∇X , c(Y )] = c(∇XY ).

Then the geometric (or the riemannian) Dirac operator is defined as the follow-

ing composition:

D : Γ(E)
∇
−→ Γ(T ∗M ⊗ E)

д
−→ Γ(TM ⊗ E) → Γ(E).

Here, Γ(E) denotes the space of sections of E, and the last map is provided by the

Clifford action. In terms of a local orthonormal frame e1, . . . , en for the tangent

bundle TM , we have

D =

n
∑

i=1

c(ei )∇ei .

1.2 ANALYTIC PROPERTIES OF D. We summarize the analytic properties of the

Dirac operator D as follows (See [5, Ch. 5, 7].): It is an elliptic, (essentially) self-

adjoint, Fredholm operator on the space L2(E) of square integrable sections of the

Clifford module bundle E. The eigenvectors of D form a complete orthonormal

basis for L2(E). Each eigenvalue comes with finite multiplicity. The heat diffusion

operator e−tD
2
is admits an integral kernel kt so that

(e−tD
2

s)(x) =

∫

M

kt (x,y)s(y) voly, (1.3)

where voly is the riemannian volume form at y. Let p1, p2 be the projections of

M × M onto the first and the second component, respectively. Let E ⊠ E∗ ≔

p∗1E ⊗ p∗2E
∗. Then t 7→ kt is a smooth map from ]0,∞[ to the space of sections

of E ⊠ E∗. The kernel kt is in fact the fundamental solution of the heat equation

associated to D. That means

(∂t + D
2
x )kt (x,y) = 0, (1.4)

where the subscript in Dx denotes differentiation with respect to the x-variable,

and it behaves like the delta distribution under the limit t → 0+ in the sense that,

for any smooth section s of E,

lim
t→0+

∫

M

kt (x,y)s(y) voly = s(x)

under the uniform topology.

Suppose E is Z/2Z-graded so that Γ(E) = Γ(E)+ ⊕ Γ(E)−. Let ε be the grading

operator for Γ(E) so that Γ(E)± are the±1-eigenspaces of ε . We assume thatD anti-

commutes with ε , which is to say that D is an odd operator. Then D decomposes

as

D =

(

0 D−

D+ 0

)

.
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We defined the (graded) index of D as

inds D ≔ dim ker(D+) − dim ker(D−).

The super-trace of an operator on Γ(E) is the usual trace precomposed with

the grading operator. Owing to the McKean-Singer formula [4], the index of D

can be obtained from the super-trace of e−tD
2
:

inds D = trs e
−tD2

= tr(εe−tD
2

). (1.5)

In terms of the heat kernel, the above can be written as

inds D =

∫

M

trs (kt (y,y)) voly . (1.6)

Note that the left-hand side is independent of t . Thus, the above equation should

hold even in the limit of t → 0+. Under that limit the heat kernel has an asymp-

totic expansion

kt (x,y) ∼
1

(4πt)n/2

∞
∑

j=0

a(x,y)jt
j (1.7)

where n = dimM . This leads to

inds D = lim
t→0+

∫

M

trs kt (y,y) voly (1.8)

= lim
t→0+

1

(4πt)n/2

∞
∑

j=0

(

∫

M

trs a(y,y)j dy
)

t j−n/2. (1.9)

From the finiteness of the left-hand side, we conclude that the index is zero if n is

odd. So, in the rest of the presentation, we shall assume that the dimension of M

is even. Then, we must have

0 =

∫

M

trs a(y,y)j voly (1.10)

for 0 6 j 6 n
2 − 1, and

inds D =
1

(4π )n/2

∫

M

trs a(y,y)n/2 voly . (1.11)

1.12 HEAT KERNEL IN NORMAL COORDINATES. To evaluate the integral 1.11,

we need to know the asymptotic expansion of the heat kernel along the diagonal,

kt (y,y). Let us fix y ∈ M . Take the normal coordinates (exponential chart) about

y. The normal coordinates use the exponential map Expy : TyM → M to describe

points near y. We wish to write down an expression for

kt (X ) ≔ kt (Expy X ,y) ∈ Hom(Ey, EExpy X ).
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In this notation we have suppressed the dependence ony. Using parallel transport

along the geodesic connecting y and ExpX we can identify EExpy X with Ey . This

gives means to identify the value of the heat kernel kt (X ) with an element of

End(Ey ). Since we assume thatM is of even dimension, the spinor representation

S for Cl(TyM) is naturally Z/2Z-graded, and any spinor module is isomorphic to

S ⊗ V where V is some auxiliary vector space on which the Clifford algebra acts

trivially. Hence, we may assume that

E = S ⊗ F

where S is the spinor bundle and F is some twisting bundle. And we may take the

value of kt (X ) to be in Cl(TyX ) ⊗ End(Fy ).

Let us write kt (X ) using a basis for Cl(TyX ). Let {e1, . . . , en} be the selected

orthonormal basis for TyM . For each subset I ⊆ {1, . . . ,n}, define eI = 1 if I = �,

and eI = ei1 · · · eik if I = {i1, . . . , ik } with i1 < · · · < ik . Then the asymptotic

expansion 1.7 can be written in the following form:

kt (X ) ∼
1

(4πt)n/2

∞
∑

j=0

∑

I

a(X )j ,IeI t
j . (1.13)

The coefficients a(X )j ,I are End(Fy )-valued. Our ultimate goal is to evaluate the

integral 1.11; so we are interested in the super-trace of kt (X ) at X = 0, or rather,

its asymptotic expansion

trs kt (0) ∼
1

(4πt)n/2

∞
∑

j=0

∑

I

trF (a(0)j ,I ) trS(eI )t
j . (1.14)

Here, trF is the ordinary trace for End(Fy ), and trS is the super-trace for End(S).

Now, the super-trace trS eI is nonvanishing only for eI of top filtration degree

because, if I , {1, . . . ,n}, then eI is a super-commutator: eI = − 1
2 [eIei , ei ]s

for any i < I . But, if I = {1, . . . ,n} then, using the fact that the grading op-

erator for Cl(n) is provided by the element in/2e1 · · · en , we have trS(e1 · · · en) =

tr(in/2e1 · · · ene1 · · · en) = i
n/2(−1)n(n+1)/2 dim(S) = in/2(−1)n/22n/2. Thus,

trS(eI ) =

{

(−2i)n/2, if I = {1, 2, . . . ,n};

0, otherwise.
(1.15)

So

trs kt (0) ∼
(−2i)n/2

(4πt)n/2

∞
∑

j=0

trF a(0)j , {1, ...,n }t
j .

So a refined version of Eq. (1.10) is

0 =

∫

M

trF a(y,y)j , {1, ...,n } voly (1.16)

for 0 6 j 6 n
2 − 1. And Eq. (1.11) now takes the form
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inds D =
(−2i)n/2

(4π )n/2

∫

M

trF a(y,y)n
2 , {1, ...,n }

voly . (1.17)

To evaluate the quantity trF a(y,y)n
2 , {1, ...,n }

, we need to investigate further the

behavior of the heat kernel kt (X ) in the limit of t → 0+.

1.18 GETZLER RESCALING. The operator e−tD
2
is related to the Boltzmann factor

with temperature 1/t . The limit t → 0+ is the high temperature limit. Employ-

ing the language of physics, a physical system under the high temperature limit

behaves more like a classical system, and the interactions among its constituents

become localized. To mimic this limit we shall introduce two rescaling maps. Let

λ denote a nonnegative real number, serving as the rescaling parameter.

The first rescaling we define is for the metric д onM ,

дλ ≔ λ2д.

Denote by Cl(TyM)λ the Clifford algebra generated byTyM with respect to to the

rescaled inner product дλ . Hence, when λ = 1, we have the usual Cl(TyM). When

λ = 0, we simply have the exterior algebra:

Cl(TyM)0 = ∧TyM . (1.19)

For λ > 0, there is an algebra isomorphism

Uλ : Cl(TyM)1 → Cl(TyM)λ

eI 7→ λ−|I |eI .
(1.20)

Then,

lim
λ→0+

λ |I |Uλ(eI ) = êI ∈ ∧TyM, (1.21)

where êI is defined exactly as eI except using the exterior multiplication.

The second rescaling we define is the map

Tλ : TyM → TyM

X 7→ λX .
(1.22)

The pullback T ∗
λ
: C∞(TyM) → C∞(TyM) will serve as an instrument for localiza-

tion.

Let us applyUλ and the pullbackT
∗
λ
on kt (X ). Then the asymptotic expansion

1.13 gives us

UλT
∗
λkt (X ) ∼

1

(4πt)n/2

∑

j ,I

λ−|I |a(λX )j ,IeI t
j . (1.23)

Remember that we are ultimately interested in the coefficients a(X )j ,I with |I | =

n and taking the limit λ → 0. But then the factor λ−|I | in front of a(X )j , |I |=n
would blow up. So consider for the moment the function kλt (X )whose asymptotic
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expansion is

kλt (X ) ∼
1

(4πt)n/2

∑

j ,I

λ2j−|I |a(λX )j ,IeI t
j . (1.24)

In fact, the above expansion can be obtained from the expansion 1.23 by first

making the substitution

t 7→ λ2t

and then multiplying by λn . This motivates us to consider the function

kλt ≔ λnUλT
∗
λkλ2t . (1.25)

We shall see in Cor. 2.14 that this is the heat kernel of a rescaled Dirac operator.

2 PROOF OF THE INDEX THEOREM

2.1 MAIN IDEA. Our aim is to show the following:

In the limit of λ → 0+, the super-trace of the rescaled heat kernel kλt defined by

Eq. (1.25) will lead us to the integrand in Eq. (1.17) for inds D. More precisely, we

will prove the following:

(A) The rescaled function kλt is the heat kernel of some rescaled Dirac operator

Dλ .

(B) The limit D2
0 ≔ lim

λ→0+
D2
λ exists (under the strong operator topology).

(C) The asymptotic expansion for the heat kernel k0t of D2
0 can be obtained by

taking the limit λ → 0+ of the asymptotic expansion for kλt . The asymptotic

expansion of the super-trace of k0t thus obtained is

trs k
0
t ∼ (2πi)−n/2 trF a(0)n/2,(0,1, ...,n). (2.2)

(D) The kernel k0t can be explicitly calculated:

k0t (X ) =
1

(4πt)n/2
det

1
2

( tΩM/2

sinh tΩM/2

)

e−
1
4t д(

tΩM

2 coth tΩM

2 X ,X )e−tΩ
F

, (2.3)

where ΩM is the section of End(TM) ⊗ ∧2TM corresponding to the curvature

2-form of the tangent bundle under the identification of ∧2T ∗M with ∧2TM

by the metric; ΩF is defined similarly for the auxiliary bundle F → M .

(E) Calculating the left-hand side of the asymptotic equality 2.2 leads to

trF a(0)n/2,(0,1, ...,n)vol = (2πi)n/2Â(M) ch(F )
�

�

�

n-form
. (2.4)
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Combining Eq. (2.4) and Eq. (1.17) yields the Atiyah-Singer index theorem,

inds D =

∫

M

Â(M) ch(F )
�

�

�

n-form
.

2.5 PROOF OF (A). The rescaled heat kernel kλt is related to the original heat ker-

nel kt by

kλt = Rλkλ2t ,

where Rλ ≔ λnUλT
∗
λ
. The kernel kλ2t satisfies the differential equation

( 1

λ2
∂t + D

2
)

kλ2t = 0.

So the rescaled heat kernel kλt satisfies

Rλ

( 1

λ2
∂t + D

2
)

R−1
λ kλt = 0.

Or equivalently,

(∂t + λ
2RλD

2R−1
λ )kλt = 0.

It follows that kλt is the heat kernel for the rescaled Dirac operator

D2
λ ≔ λ2RλD

2R−1
λ . (2.6)

�

2.7 PROOF OF (B). To calculate lim
λ→0+

D2
λ , we adopt once again the normal coordi-

nates and the synchronous frame for the bundle E = S ⊗ F . Write

∇∂i = ∂i + ωi +Ai

where ωi , Ai are the Christoffel symbols for S and V respectively. Using the Lie

algebra isomorphism so(TyM) ≃ ∧2TyM and the anti-symmetrization map q :

∧∗TyM
∼
−→ Cl(TyM), we can write

ωi =
1

2
qΓi =

1

2
q
∑

i<j

Γ
k
i j∂j ∧ ∂k

where Γki j are the Christoffel symbols of the riemannian connection on TM .

We need to conjugate D2 by Rλ to get D2
λ
. Recall the Weitzenböck formula

[5, Prop.3.18, p.48]:

D2
= ∇∗∇ +

κ

4
+ qΩF ,

where κ is the scalar curvature of M , and qΩF is a section of End(F ) ⊗ Cl(TM)

obtained by applying the map q to the ∧2T ∗M part of the curvature 2-form of the

7



auxiliary bundle F . Since ∇∗∇ = −
∑

i , j д
i j (∇i∇j − Γ

k
i j∇k ), we have

D2
= −

∑

i , j

дi j (∂i +
1

2
qΓi +Ai )(∂j +

1

2
qΓj +Aj )

+

∑

i , j ,k

дi jΓki j (∂k +
1

2
qΓk +Ak ) +

κ

4
+ qΩF .

We need to conjugate this by Rλ ; this conjugation is equivalent to the rescaling

X 7→ λX combined with the application ofUλ to Clifford algebra elements. Thus,

D2
λ = −

∑

i , j

дi j (λX )(∂i +
1

2
λUλqΓi (λX ) + λAi )(∂j +

1

2
λUλqΓj (λX ) + λAj )

+ λ
∑

i , j ,k

дi j (λX )Γki j (∂k +
1

2
λUλqΓk (λX ) + λAk ) + λ

2κ

4
+ λ2UλqΩ

F (λX ).

(2.8)

We have written down the dependence on the position X explicitly.

To calculate the limit under λ → 0+, the following Taylor series come in

handy:

дi j (X ) = δi j +O(|X |2),

Γi (X ) = −
1

4

∑

j ,a,b

Ri jabX
j (∂a ∧ ∂b ) +O(|X |2),

where R
i jab

are the coefficients of the Riemann curvature tensor. Let us write

Ω
M
ij ≔

1
2

∑

a,b Ri jab∂a ∧ ∂b . Then

lim
λ→0+

D2
λ = lim

λ→0+

(

−
∑

i , j

δ i j
(

∂i −
1

4
λ2Uλ

(

qΩik +O(|λX |2)
)

X k
) (

∂j −
1

4
λ2Uλ

(

qΩjk +O(|λX |2
)

X k
)

+ λ2UλqΩ
F (λX )

)

.

Now, qΩM
ij , when expanded in terms of the basis eI for the Clifford algebra, con-

tains only the terms with |I | = 2. Thus, owing to Eq. (1.21), we have

lim
λ→0+

λUλqΓi (λX ) = lim
λ→0+

−
1

2
λ2UλqΩ

M
ij X

j
= −

1

2
Ω
M
ij X

j .

Therefore,

D2
0 ≔ lim

λ→0+
D2
λ = −

∑

i

(

∂i −
1

4

∑

k

ΩikX
k
)2
+ Ω

F (0). (2.9)

Note that ΩF (0) ∈ End(S). �
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2.10 PROOF OF (C). Let k0t be the heat kernel for D2
0. Coefficients in the asymp-

totic expansion 1.24 depend continuously on the coefficients of D2
λ
[1, Thm.2.48,

p.98]. Thus, the asymptotic expansion for k0t can be obtained by taking the limit

λ → 0+ of the asymptotic expansion for kλt , which is the expansion 1.24. Owing

to Eq. (1.15), we have

trs k
λ
t (X ) ∼

(−2i)n/2

(4πt)n/2

∞
∑

j=0

λ2j−n trF a(λX )j , {1, ...,n }t
j . (2.11)

We wish to take the limit λ → 0+, but we are concerned about the coefficients

a(λX )j , {1, ...,n } with j < n/2. But they must be zero since we know that taking the

limit λ → 0+ must yield the asymptotic expansion for k0t . (In fact, more can be

said as we shall see in Cor. 2.14.) Thus,

trs k
0
t (X ) ∼ lim

λ→0+

(−2i)n/2

(4πt)n/2

∑

j>n/2

λ2j−n trF a(λX )j , {1, ...,n }t
j

=

(−2i)n/2

(4π )n/2
trF a(0)n

2 ,(0,1, ...,n)
. (2.12)

�

2.13 PROOF OF (D). Write the operator 2.9 as

D2
0 = H + Ω

F (0).

The operators H and Ω
F (0) commute with each other. So e−tD

2
0 = e−tHe−tΩ

F
,

and the heat kernel of D2
0 is k

0
t = hte

−tΩF
where ht is the heat kernel of H . The

operator H is what is called the “generalized harmonic oscillator”. Its heat kernel

ht is known [5, Prop.12.25]:

ht (X ) =
1

(4πt)n/2
det

1
2

( tΩM/2

sinh tΩM/2

)

e−
1
4t д(

tΩM

2 coth tΩM

2 X ,X ).

�

Remark. Note that the final quantity in Eq. (2.12) is the integrand in Eq. (1.17). So

we have obtained a workaround in calculating the integrand for inds D, using the

rescaled heat kernel kλt instead of the original heat kernel kt . The key relationship

in this vein is that

lim
t→0+

trs kt (0) = lim
λ→0+

trs k
λ
t (X ).

This follows from applying Cor. 2.14 below to the asymptotic expansion 1.14 of

the original heat kernel kt .

2.14 COROLLARY. Let a(X )j ,I be the coefficients in the asymptotic expansion 1.13.

Then

a(0)j ,I = 0 if j <
|I |

2
(2.15)
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Proof. By Eq. (2.3),

k0t (0) = ht (0)e
−tΩF

=

1

(4πt)n/2
det

1
2

( tΩM/2

sinh tΩM/2

)

e−tΩ
F

. (2.16)

Note that this is an element of (∧TyM) ⊗ End(E) by Eq. (1.19). Taking the power

series expansion with respect to t ,

k0t (0) =
1

(4πt)n/2

∞
∑

j=0

Pj (
1
2Ω

M ,−ΩF )t j (2.17)

where Pj is a homogeneous polynomial of degree j. The above is the asymptotic

expansion for k0t (0). It has to be equal to, under the limit of λ → 0+, the asymp-

totic expansion for kλt . By the expansion 1.24,

kλt (0) ∼
1

(4πt)n/2

∑

j ,I

λ2j−|I |a(0)j ,IeI t
j . (2.18)

Therefore,

Pj (
1
2Ω

M ,−ΩF ) = lim
λ→0+

∑

I

λ2j−|I |a(0)j ,IeI . (2.19)

Since the left-hand side is well-defined, the limit in the right-hand side must con-

verge. Hence, a(0)j ,I = 0 for j < |I |
2 . �

Remark. In retrospect, Eq. (2.19) can now be written as

Pj (
1
2Ω

M ,−ΩF ) =
∑

|I |=2j

a(0)j ,IeI . (2.20)

Since |I | 6 n, we have

Pj , 0 only if j = 0, 1, . . . ,n/2.

So Eq. (2.17) can be rewritten as

k0t (0) =
1

(4πt)n/2

n/2
∑

j=0

Pjt
j . (2.21)

2.22 PROOF OF (E). Taking the super-trace on both sides of Eq. (2.21), we get

trs k
0
t (0) =

1

(4π )n/2
trs Pn/2(

1
2Ω

M ,−ΩF ) =
(−2i)n/2

(4π )n/2
trF a(0)n

2 ,(0,1, ...,n)
, (2.23)
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where we have used Eq. (2.20) and Eq. (1.15). Comparing Eqs. (2.16) and (2.17),

we see that Pn/2(
Ω
M

2 ,−Ω
F ) is the n-form part of

det
1
2

(

Ω
M/2

sinhΩM/2

)

e−qΩ
F

.

We want the super-trace of this. Let α1, . . . ,αn be the local coframe for the cotan-

gent bundle dual to the orthonormal frame e1, . . . , en for TM . Note that

• the power series of det
1
2

(

Ω
M /2

sinhΩM /2

)

consists of terms such as pαI where p is

a smooth function;

• the power series of e−qΩ
F
consists of terms such asAαI ′ whereA is a matrix

valued smooth function.

When the two terms pαI , AαI ′ are multiplied, the super-trace of the product is

locally of the form

trs (pAαI ∧ αI ′) = trF (pA) trS(αI ∧ αI ′) = p trF (A) trS(αI ∧ αI ′).

We are only concerned when |I | + |I ′ | = n, in which case the above quantity is

equal to

(−2i)n/2p trF (A).

Multiplying the volume form vol = α1∧· · ·∧αn to this gives us (−2i)
n/2(pαI )(trF (A)αI ′).

Our conclusion is that

trs Pn/2(
1
2Ω

M ,−ΩF )vol = (−2i)n/2 det
1
2

(

Ω
M /2

sinhΩM /2

)

trF e
−ΩF

�

�

�

n-form
(2.24)

This is just the product of the characteristic classes

Â(M) = det
1
2

(

Ω
M/4πi

sinhΩM/4πi

)

and

ch(F ) = trF (e
−ΩF /2πi ),

up to a scalar factor. Indeed, making the substitution Ω
M 7→ Ω

M/2πi and Ω
F 7→

Ω
F /2πi in Eq. (2.24), we get

trs Pn/2(
1

4πiΩ
M ,− 1

2πiΩ
F ) = (−2i)n/2Â(M) ∧ ch(F )

�

�

�

n-form
.

Because Pn/2 is a homogeneous polynomial of degree j,

Pn/2(
1
2Ω

M ,−ΩF ) = (2πi)n/2Pn/2(
1

4πiΩ
M ,− 1

2πiΩ
F ).

Therefore,

trs Pn/2(
1
2Ω

M ,−ΩF )vol = (−2i)n/2(2πi)n/2Â(M) ∧ ch(−ΩF ).

11



This result, together with Eq. (2.23), proves Eq. (2.4). �
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