PROOF OF THE ATIYAH-SINGER INDEX THEOREM
 USING THE RESCALING OF THE SPIN-DIRAC
 OPERATOR AND ITS ASSOCIATED HEAT KERNEL

SEUNGHUN HONG

30 Sep 2011

Abstract

This is a study note on the heat kernel proof of the AtiyahSinger index theorem à la Getzler [2]. Main references consulted were Roe [5] and Freed [3].

1 PRELIMINARIES

1.1 SET-UP. Let M be a compact oriented manifold M with dimension n. Let g be a riemannian metric on M. Let $\mathrm{Fr}_{\mathrm{SO}}(T M)$ be the principal $\mathrm{SO}(n)$-bundle of oriented frames of the tangent bundle $T M$ of M. We assume that M admits a spin structure, that is, there is a principal $\operatorname{Spin}(n)$-bundle $\mathrm{P}_{\text {Spin }}(M)$ over M and a bundle map

$$
\rho: \mathrm{P}_{\mathrm{Spin}}(M) \rightarrow \operatorname{Fr}_{\mathrm{SO}}(T M)
$$

such that

$$
\rho(s \cdot p)=\pi(s) \cdot \rho(p)
$$

where $p \in \mathrm{P}_{\text {Spin }}(M), s \in \operatorname{Spin}(n)$, and $\pi: \operatorname{Spin}(n) \rightarrow \mathrm{SO}(n)$ is the spin double cover.

Let $\mathbb{C l}(T M)$ denote the (complex) Clifford bundle over M; its fiber over $x \in M$ is the Clifford algebra $\mathbb{C l}\left(T_{x} M\right)$ constructed from the tangent space $T_{x} M$ and the metric. Using the spin structure and the Borel mixing construction, we can always construct a vector bundle $E \rightarrow M$ whose fiber over $x \in M$ is a Clifford module over $\mathbb{C l}\left(T_{x} M\right)$. Assume that the bundle E is also equipped with a hermitian metric (,). We can find a connection ∇ on E such that, for any vector fields X, Y on M and sections σ_{1}, σ_{2} of E,
(i) the Clifford action $c: \mathbb{C l}(T M) \rightarrow \operatorname{End}(E)$ is skew-adjoint,

$$
\left(c(X) \sigma_{1}, \sigma_{2}\right)=-\left(\sigma_{1}, c(X) \sigma_{2}\right),
$$

(ii) the connection ∇ is compatible with the hermitian metric,

$$
X\left(\sigma_{1}, \sigma_{2}\right)=\left(\nabla_{X} \sigma_{1}, \sigma_{2}\right)+\left(\sigma_{1}, \nabla_{X} \sigma_{2}\right),
$$

(iii) the connection ∇ is compatible with the riemannian connection (also denoted by ∇) on M,

$$
\left[\nabla_{X}, c(Y)\right]=c\left(\nabla_{X} Y\right)
$$

Then the geometric (or the riemannian) Dirac operator is defined as the following composition:

$$
D: \Gamma(E) \xrightarrow{\nabla} \Gamma\left(T^{*} M \otimes E\right) \xrightarrow{g} \Gamma(T M \otimes E) \rightarrow \Gamma(E) .
$$

Here, $\Gamma(E)$ denotes the space of sections of E, and the last map is provided by the Clifford action. In terms of a local orthonormal frame e_{1}, \ldots, e_{n} for the tangent bundle $T M$, we have

$$
D=\sum_{i=1}^{n} c\left(e_{i}\right) \nabla_{e_{i}} .
$$

1.2 ANALYTIC PROPERTIES OF D. We summarize the analytic properties of the Dirac operator D as follows (See [5, Ch. 5, 7].): It is an elliptic, (essentially) selfadjoint, Fredholm operator on the space $L^{2}(E)$ of square integrable sections of the Clifford module bundle E. The eigenvectors of D form a complete orthonormal basis for $L^{2}(E)$. Each eigenvalue comes with finite multiplicity. The heat diffusion operator $e^{-t D^{2}}$ is admits an integral kernel k_{t} so that

$$
\begin{equation*}
\left(e^{-t D^{2}} s\right)(x)=\int_{M} k_{t}(x, y) s(y) \operatorname{vol}_{y}, \tag{1.3}
\end{equation*}
$$

where vol_{y} is the riemannian volume form at y. Let p_{1}, p_{2} be the projections of $M \times M$ onto the first and the second component, respectively. Let $E \boxtimes E^{*}:=$ $p_{1}^{*} E \otimes p_{2}^{*} E^{*}$. Then $t \mapsto k_{t}$ is a smooth map from $] 0, \infty[$ to the space of sections of $E \boxtimes E^{*}$. The kernel k_{t} is in fact the fundamental solution of the heat equation associated to D. That means

$$
\begin{equation*}
\left(\partial_{t}+D_{x}^{2}\right) k_{t}(x, y)=0, \tag{1.4}
\end{equation*}
$$

where the subscript in D_{x} denotes differentiation with respect to the x-variable, and it behaves like the delta distribution under the limit $t \rightarrow 0+$ in the sense that, for any smooth section s of E,

$$
\lim _{t \rightarrow 0+} \int_{M} k_{t}(x, y) s(y) \operatorname{vol}_{y}=s(x)
$$

under the uniform topology.
Suppose E is $\mathbb{Z} / 2 \mathbb{Z}$-graded so that $\Gamma(E)=\Gamma(E)^{+} \oplus \Gamma(E)^{-}$. Let ε be the grading operator for $\Gamma(E)$ so that $\Gamma(E)^{ \pm}$are the ± 1-eigenspaces of ε. We assume that D anticommutes with ε, which is to say that D is an odd operator. Then D decomposes as

$$
D=\left(\begin{array}{cc}
0 & D_{-} \\
D_{+} & 0
\end{array}\right) .
$$

We defined the (graded) index of D as

$$
\operatorname{ind}_{s} D:=\operatorname{dim} \operatorname{ker}\left(D_{+}\right)-\operatorname{dim} \operatorname{ker}\left(D_{-}\right) .
$$

The super-trace of an operator on $\Gamma(E)$ is the usual trace precomposed with the grading operator. Owing to the McKean-Singer formula [4], the index of D can be obtained from the super-trace of $e^{-t D^{2}}$:

$$
\begin{equation*}
\operatorname{ind}_{s} D=\operatorname{tr}_{s} e^{-t D^{2}}=\operatorname{tr}\left(\varepsilon e^{-t D^{2}}\right) \tag{1.5}
\end{equation*}
$$

In terms of the heat kernel, the above can be written as

$$
\begin{equation*}
\operatorname{ind}_{s} D=\int_{M} \operatorname{tr}_{s}\left(k_{t}(y, y)\right) \operatorname{vol}_{y} . \tag{1.6}
\end{equation*}
$$

Note that the left-hand side is independent of t. Thus, the above equation should hold even in the limit of $t \rightarrow 0+$. Under that limit the heat kernel has an asymptotic expansion

$$
\begin{equation*}
k_{t}(x, y) \sim \frac{1}{(4 \pi t)^{n / 2}} \sum_{j=0}^{\infty} a(x, y)_{j} t^{j} \tag{1.7}
\end{equation*}
$$

where $n=\operatorname{dim} M$. This leads to

$$
\begin{align*}
\operatorname{ind}_{s} D & =\lim _{t \rightarrow 0+} \int_{M} \operatorname{tr}_{s} k_{t}(y, y) \operatorname{vol}_{y} \tag{1.8}\\
& =\lim _{t \rightarrow 0+} \frac{1}{(4 \pi t)^{n / 2}} \sum_{j=0}^{\infty}\left(\int_{M} \operatorname{tr}_{s} a(y, y)_{j} d y\right) t^{j-n / 2} \tag{1.9}
\end{align*}
$$

From the finiteness of the left-hand side, we conclude that the index is zero if n is odd. So, in the rest of the presentation, we shall assume that the dimension of M is even. Then, we must have

$$
\begin{equation*}
0=\int_{M} \operatorname{tr}_{s} a(y, y)_{j} \operatorname{vol}_{y} \tag{1.10}
\end{equation*}
$$

for $0 \leqslant j \leqslant \frac{n}{2}-1$, and

$$
\begin{equation*}
\operatorname{ind}_{s} D=\frac{1}{(4 \pi)^{n / 2}} \int_{M} \operatorname{tr}_{s} a(y, y)_{n / 2} \operatorname{vol}_{y} \tag{1.11}
\end{equation*}
$$

1.12 HEAT KERNEL IN NORMAL COORDINATES. To evaluate the integral 1.11, we need to know the asymptotic expansion of the heat kernel along the diagonal, $k_{t}(y, y)$. Let us fix $y \in M$. Take the normal coordinates (exponential chart) about y. The normal coordinates use the exponential map $\operatorname{Exp}_{y}: T_{y} M \rightarrow M$ to describe points near y. We wish to write down an expression for

$$
k_{t}(X):=k_{t}\left(\operatorname{Exp}_{y} X, y\right) \in \operatorname{Hom}\left(E_{y}, E_{\operatorname{Exp}_{y} X}\right) .
$$

In this notation we have suppressed the dependence on y. Using parallel transport along the geodesic connecting y and $\operatorname{Exp} X$ we can identify $E_{\operatorname{Exp}_{y}} X$ with E_{y}. This gives means to identify the value of the heat kernel $k_{t}(X)$ with an element of $\operatorname{End}\left(E_{y}\right)$. Since we assume that M is of even dimension, the spinor representation \mathbb{S} for $\mathbb{C l}\left(T_{y} M\right)$ is naturally $\mathbb{Z} / 2 \mathbb{Z}$-graded, and any spinor module is isomorphic to $\mathbb{S} \otimes V$ where V is some auxiliary vector space on which the Clifford algebra acts trivially. Hence, we may assume that

$$
E=S \otimes F
$$

where S is the spinor bundle and F is some twisting bundle. And we may take the value of $k_{t}(X)$ to be in $\mathbb{C l}\left(T_{y} X\right) \otimes \operatorname{End}\left(F_{y}\right)$.

Let us write $k_{t}(X)$ using a basis for $\mathbb{C l}\left(T_{y} X\right)$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the selected orthonormal basis for $T_{y} M$. For each subset $I \subseteq\{1, \ldots, n\}$, define $e_{I}=1$ if $I=\varnothing$, and $e_{I}=e_{i_{1}} \cdots e_{i_{k}}$ if $I=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{1}<\cdots<i_{k}$. Then the asymptotic expansion 1.7 can be written in the following form:

$$
\begin{equation*}
k_{t}(X) \sim \frac{1}{(4 \pi t)^{n / 2}} \sum_{j=0}^{\infty} \sum_{I} a(X)_{j, I} e_{I} t^{j} \tag{1.13}
\end{equation*}
$$

The coefficients $a(X)_{j, I}$ are $\operatorname{End}\left(F_{y}\right)$-valued. Our ultimate goal is to evaluate the integral 1.11; so we are interested in the super-trace of $k_{t}(X)$ at $X=0$, or rather, its asymptotic expansion

$$
\begin{equation*}
\operatorname{tr}_{s} k_{t}(0) \sim \frac{1}{(4 \pi t)^{n / 2}} \sum_{j=0}^{\infty} \sum_{I} \operatorname{tr}_{F}\left(a(0)_{j, I}\right) \operatorname{tr}_{\mathbb{S}}\left(e_{I}\right) t^{j} \tag{1.14}
\end{equation*}
$$

Here, tr_{F} is the ordinary trace for $\operatorname{End}\left(F_{y}\right)$, and $\operatorname{tr}_{\mathbb{S}}$ is the super-trace for $\operatorname{End}(\mathbb{S})$. Now, the super-trace $\operatorname{tr}_{\mathbb{S}} e_{I}$ is nonvanishing only for e_{I} of top filtration degree because, if $I \neq\{1, \ldots, n\}$, then e_{I} is a super-commutator: $e_{I}=-\frac{1}{2}\left[e_{I} e_{i}, e_{i}\right]_{s}$ for any $i \notin I$. But, if $I=\{1, \ldots, n\}$ then, using the fact that the grading operator for $\mathbb{C l}(n)$ is provided by the element $i^{n / 2} e_{1} \cdots e_{n}$, we have $\operatorname{tr}_{\mathbb{S}}\left(e_{1} \cdots e_{n}\right)=$ $\operatorname{tr}\left(i^{n / 2} e_{1} \cdots e_{n} e_{1} \cdots e_{n}\right)=i^{n / 2}(-1)^{n(n+1) / 2} \operatorname{dim}(\mathbb{S})=i^{n / 2}(-1)^{n / 2} 2^{n / 2}$. Thus,

$$
\operatorname{tr}_{\mathbb{S}}\left(e_{I}\right)= \begin{cases}(-2 i)^{n / 2}, & \text { if } I=\{1,2, \ldots, n\} \tag{1.15}\\ 0, & \text { otherwise }\end{cases}
$$

So

$$
\operatorname{tr}_{s} k_{t}(0) \sim \frac{(-2 i)^{n / 2}}{(4 \pi t)^{n / 2}} \sum_{j=0}^{\infty} \operatorname{tr}_{F} a(0)_{j,\{1, \ldots, n\}} t^{j}
$$

So a refined version of Eq. (1.10) is

$$
\begin{equation*}
0=\int_{M} \operatorname{tr}_{F} a(y, y)_{j,\{1, \ldots, n\}} \operatorname{vol}_{y} \tag{1.16}
\end{equation*}
$$

for $0 \leqslant j \leqslant \frac{n}{2}-1$. And Eq. (1.11) now takes the form

$$
\begin{equation*}
\operatorname{ind}_{s} D=\frac{(-2 i)^{n / 2}}{(4 \pi)^{n / 2}} \int_{M} \operatorname{tr}_{F} a(y, y)_{\frac{n}{2},\{1, \ldots, n\}} \operatorname{vol}_{y} \tag{1.17}
\end{equation*}
$$

To evaluate the quantity $\operatorname{tr}_{F} a(y, y)_{\frac{n}{2},\{1, \ldots, n\}}$, we need to investigate further the behavior of the heat kernel $k_{t}(X)$ in the limit of $t \rightarrow 0+$.
1.18 GETZLER RESCALING. The operator $e^{-t D^{2}}$ is related to the Boltzmann factor with temperature $1 / t$. The limit $t \rightarrow 0+$ is the high temperature limit. Employing the language of physics, a physical system under the high temperature limit behaves more like a classical system, and the interactions among its constituents become localized. To mimic this limit we shall introduce two rescaling maps. Let λ denote a nonnegative real number, serving as the rescaling parameter.

The first rescaling we define is for the metric g on M,

$$
g_{\lambda}:=\lambda^{2} g .
$$

Denote by $\mathbb{C l}\left(T_{y} M\right)_{\lambda}$ the Clifford algebra generated by $T_{y} M$ with respect to to the rescaled inner product g_{λ}. Hence, when $\lambda=1$, we have the usual $\mathbb{C l}\left(T_{y} M\right)$. When $\lambda=0$, we simply have the exterior algebra:

$$
\begin{equation*}
\mathbb{C l}\left(T_{y} M\right)_{0}=\wedge T_{y} M \tag{1.19}
\end{equation*}
$$

For $\lambda>0$, there is an algebra isomorphism

$$
\begin{align*}
U_{\lambda}: \mathbb{C l}\left(T_{y} M\right)_{1} & \rightarrow \mathbb{C l}\left(T_{y} M\right)_{\lambda} \\
e_{I} & \mapsto \lambda^{-|I|} e_{I} . \tag{1.20}
\end{align*}
$$

Then,

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0+} \lambda^{|I|} U_{\lambda}\left(e_{I}\right)=\hat{e}_{I} \in \wedge T_{y} M \tag{1.21}
\end{equation*}
$$

where \hat{e}_{I} is defined exactly as e_{I} except using the exterior multiplication.
The second rescaling we define is the map

$$
\begin{align*}
T_{\lambda}: T_{y} M & \rightarrow T_{y} M \tag{1.22}\\
X & \mapsto \lambda X .
\end{align*}
$$

The pullback $T_{\lambda}^{*}: C^{\infty}\left(T_{y} M\right) \rightarrow C^{\infty}\left(T_{y} M\right)$ will serve as an instrument for localization.

Let us apply U_{λ} and the pullback T_{λ}^{*} on $k_{t}(X)$. Then the asymptotic expansion 1.13 gives us

$$
\begin{equation*}
U_{\lambda} T_{\lambda}^{*} k_{t}(X) \sim \frac{1}{(4 \pi t)^{n / 2}} \sum_{j, I} \lambda^{-|I|} a(\lambda X)_{j, I} e_{I} t^{j} \tag{1.23}
\end{equation*}
$$

Remember that we are ultimately interested in the coefficients $a(X)_{j, I}$ with $|I|=$ n and taking the limit $\lambda \rightarrow 0$. But then the factor $\lambda^{-|I|}$ in front of $a(X)_{j,|I|=n}$ would blow up. So consider for the moment the function $k_{t}^{\lambda}(X)$ whose asymptotic
expansion is

$$
\begin{equation*}
k_{t}^{\lambda}(X) \sim \frac{1}{(4 \pi t)^{n / 2}} \sum_{j, I} \lambda^{2 j-|I|} a(\lambda X)_{j, I} e_{I} t^{j} \tag{1.24}
\end{equation*}
$$

In fact, the above expansion can be obtained from the expansion 1.23 by first making the substitution

$$
t \mapsto \lambda^{2} t
$$

and then multiplying by λ^{n}. This motivates us to consider the function

$$
\begin{equation*}
k_{t}^{\lambda}:=\lambda^{n} U_{\lambda} T_{\lambda}^{*} k_{\lambda^{2} t} . \tag{1.25}
\end{equation*}
$$

We shall see in Cor. 2.14 that this is the heat kernel of a rescaled Dirac operator.

2 PROOF OF THE INDEX THEOREM

2.1 MAIN IDEA. Our aim is to show the following:

In the limit of $\lambda \rightarrow 0+$, the super-trace of the rescaled heat kernel k_{t}^{λ} defined by Eq. (1.25) will lead us to the integrand in Eq. (1.17) for ind ${ }_{s} D$. More precisely, we will prove the following:
(A) The rescaled function k_{t}^{λ} is the heat kernel of some rescaled Dirac operator D_{λ}.
(B) The limit $D_{0}^{2}:=\lim _{\lambda \rightarrow 0+} D_{\lambda}^{2}$ exists (under the strong operator topology).
(C) The asymptotic expansion for the heat kernel k_{t}^{0} of D_{0}^{2} can be obtained by taking the limit $\lambda \rightarrow 0+$ of the asymptotic expansion for k_{t}^{λ}. The asymptotic expansion of the super-trace of k_{t}^{0} thus obtained is

$$
\begin{equation*}
\operatorname{tr}_{s} k_{t}^{0} \sim(2 \pi i)^{-n / 2} \operatorname{tr}_{F} a(0)_{n / 2,(0,1, \ldots, n)} . \tag{2.2}
\end{equation*}
$$

(D) The kernel k_{t}^{0} can be explicitly calculated:

$$
\begin{equation*}
k_{t}^{0}(X)=\frac{1}{(4 \pi t)^{n / 2}} \operatorname{det}^{\frac{1}{2}}\left(\frac{t \Omega^{M} / 2}{\sinh t \Omega^{M} / 2}\right) e^{-\frac{1}{4 t} g\left(\frac{t \Omega^{M}}{2} \operatorname{coth} \frac{t \Omega^{M}}{2} X, X\right)} e^{-t \Omega^{F}}, \tag{2.3}
\end{equation*}
$$

where Ω^{M} is the section of $\operatorname{End}(T M) \otimes \wedge^{2} T M$ corresponding to the curvature 2-form of the tangent bundle under the identification of $\wedge^{2} T^{*} M$ with $\wedge^{2} T M$ by the metric; Ω^{F} is defined similarly for the auxiliary bundle $F \rightarrow M$.
(E) Calculating the left-hand side of the asymptotic equality 2.2 leads to

$$
\begin{equation*}
\operatorname{tr}_{F} a(0)_{n / 2,(0,1, \ldots, n)} \mathrm{vol}=\left.(2 \pi i)^{n / 2} \hat{A}(M) \operatorname{ch}(F)\right|_{n \text {-form }} \tag{2.4}
\end{equation*}
$$

Combining Eq. (2.4) and Eq. (1.17) yields the Atiyah-Singer index theorem,

$$
\operatorname{ind}_{s} D=\left.\int_{M} \hat{A}(M) \operatorname{ch}(F)\right|_{n \text {-form }}
$$

2.5 PROOF OF (A). The rescaled heat kernel k_{t}^{λ} is related to the original heat kernel k_{t} by

$$
k_{t}^{\lambda}=R_{\lambda} k_{\lambda^{2} t},
$$

where $R_{\lambda}:=\lambda^{n} U_{\lambda} T_{\lambda}^{*}$. The kernel $k_{\lambda^{2} t}$ satisfies the differential equation

$$
\left(\frac{1}{\lambda^{2}} \partial_{t}+D^{2}\right) k_{\lambda^{2} t}=0
$$

So the rescaled heat kernel k_{t}^{λ} satisfies

$$
R_{\lambda}\left(\frac{1}{\lambda^{2}} \partial_{t}+D^{2}\right) R_{\lambda}^{-1} k_{t}^{\lambda}=0
$$

Or equivalently,

$$
\left(\partial_{t}+\lambda^{2} R_{\lambda} D^{2} R_{\lambda}^{-1}\right) k_{t}^{\lambda}=0
$$

It follows that k_{t}^{λ} is the heat kernel for the rescaled Dirac operator

$$
\begin{equation*}
D_{\lambda}^{2}:=\lambda^{2} R_{\lambda} D^{2} R_{\lambda}^{-1} \tag{2.6}
\end{equation*}
$$

2.7 PROOF OF (B). To calculate $\lim _{\lambda \rightarrow 0+} D_{\lambda}^{2}$, we adopt once again the normal coordinates and the synchronous frame for the bundle $E=S \otimes F$. Write

$$
\nabla_{\partial_{i}}=\partial_{i}+\omega_{i}+A_{i}
$$

where ω_{i}, A_{i} are the Christoffel symbols for \mathbb{S} and V respectively. Using the Lie algebra isomorphism $\mathfrak{s v}\left(T_{y} M\right) \simeq \wedge^{2} T_{y} M$ and the anti-symmetrization map q : $\wedge^{*} T_{y} M \xrightarrow{\sim} \mathbb{C l}\left(T_{y} M\right)$, we can write

$$
\omega_{i}=\frac{1}{2} q \Gamma_{i}=\frac{1}{2} q \sum_{i<j} \Gamma_{i j}^{k} \partial_{j} \wedge \partial_{k}
$$

where $\Gamma_{i j}^{k}$ are the Christoffel symbols of the riemannian connection on $T M$.
We need to conjugate D^{2} by R_{λ} to get D_{λ}^{2}. Recall the Weitzenböck formula [5, Prop.3.18, p.48]:

$$
D^{2}=\nabla^{*} \nabla+\frac{\kappa}{4}+q \Omega^{F},
$$

where κ is the scalar curvature of M, and $q \Omega^{F}$ is a section of $\operatorname{End}(F) \otimes \mathbb{C l}(T M)$ obtained by applying the map q to the $\wedge^{2} T^{*} M$ part of the curvature 2-form of the
auxiliary bundle F. Since $\nabla^{*} \nabla=-\sum_{i, j} g^{i j}\left(\nabla_{i} \nabla_{j}-\Gamma_{i j}^{k} \nabla_{k}\right)$, we have

$$
\begin{aligned}
D^{2}= & -\sum_{i, j} g^{i j}\left(\partial_{i}+\frac{1}{2} q \Gamma_{i}+A_{i}\right)\left(\partial_{j}+\frac{1}{2} q \Gamma_{j}+A_{j}\right) \\
& +\sum_{i, j, k} g^{i j} \Gamma_{i j}^{k}\left(\partial_{k}+\frac{1}{2} q \Gamma_{k}+A_{k}\right)+\frac{\kappa}{4}+q \Omega^{F}
\end{aligned}
$$

We need to conjugate this by R_{λ}; this conjugation is equivalent to the rescaling $X \mapsto \lambda X$ combined with the application of U_{λ} to Clifford algebra elements. Thus,

$$
\begin{align*}
D_{\lambda}^{2}= & -\sum_{i, j} g^{i j}(\lambda X)\left(\partial_{i}+\frac{1}{2} \lambda U_{\lambda} q \Gamma_{i}(\lambda X)+\lambda A_{i}\right)\left(\partial_{j}+\frac{1}{2} \lambda U_{\lambda} q \Gamma_{j}(\lambda X)+\lambda A_{j}\right) \\
& +\lambda \sum_{i, j, k} g^{i j}(\lambda X) \Gamma_{i j}^{k}\left(\partial_{k}+\frac{1}{2} \lambda U_{\lambda} q \Gamma_{k}(\lambda X)+\lambda A_{k}\right)+\lambda^{2} \frac{\kappa}{4}+\lambda^{2} U_{\lambda} q \Omega^{F}(\lambda X) \tag{2.8}
\end{align*}
$$

We have written down the dependence on the position X explicitly.
To calculate the limit under $\lambda \rightarrow 0+$, the following Taylor series come in handy:

$$
\begin{aligned}
g_{i j}(X) & =\delta_{i j}+O\left(|X|^{2}\right) \\
\Gamma_{i}(X) & =-\frac{1}{4} \sum_{j, a, b} R_{i j a b} X^{j}\left(\partial_{a} \wedge \partial_{b}\right)+O\left(|X|^{2}\right),
\end{aligned}
$$

where $R_{i j a b}$ are the coefficients of the Riemann curvature tensor. Let us write $\Omega_{i j}^{M}:=\frac{1}{2} \sum_{a, b} R_{i j a b} \partial_{a} \wedge \partial_{b}$. Then

$$
\begin{aligned}
\lim _{\lambda \rightarrow 0+} D_{\lambda}^{2}=\lim _{\lambda \rightarrow 0+}(& -\sum_{i, j} \delta^{i j}\left(\partial_{i}-\frac{1}{4} \lambda^{2} U_{\lambda}\left(q \Omega_{i k}+O\left(|\lambda X|^{2}\right)\right) X^{k}\right)\left(\partial_{j}-\frac{1}{4} \lambda^{2} U_{\lambda}\left(q \Omega_{j k}+O\left(|\lambda X|^{2}\right) X^{k}\right)\right. \\
& \left.+\lambda^{2} U_{\lambda} q \Omega^{F}(\lambda X)\right)
\end{aligned}
$$

Now, $q \Omega_{i j}^{M}$, when expanded in terms of the basis e_{I} for the Clifford algebra, contains only the terms with $|I|=2$. Thus, owing to Eq. (1.21), we have

$$
\lim _{\lambda \rightarrow 0+} \lambda U_{\lambda} q \Gamma_{i}(\lambda X)=\lim _{\lambda \rightarrow 0+}-\frac{1}{2} \lambda^{2} U_{\lambda} q \Omega_{i j}^{M} X^{j}=-\frac{1}{2} \Omega_{i j}^{M} X^{j}
$$

Therefore,

$$
\begin{equation*}
D_{0}^{2}:=\lim _{\lambda \rightarrow 0+} D_{\lambda}^{2}=-\sum_{i}\left(\partial_{i}-\frac{1}{4} \sum_{k} \Omega_{i k} X^{k}\right)^{2}+\Omega^{F}(0) \tag{2.9}
\end{equation*}
$$

Note that $\Omega^{F}(0) \in \operatorname{End}(S)$.
2.10 PROOF OF (C). Let k_{t}^{0} be the heat kernel for D_{0}^{2}. Coefficients in the asymptotic expansion 1.24 depend continuously on the coefficients of D_{λ}^{2} [1, Thm.2.48, p.98]. Thus, the asymptotic expansion for k_{t}^{0} can be obtained by taking the limit $\lambda \rightarrow 0+$ of the asymptotic expansion for k_{t}^{λ}, which is the expansion 1.24 . Owing to Eq. (1.15), we have

$$
\begin{equation*}
\operatorname{tr}_{s} k_{t}^{\lambda}(X) \sim \frac{(-2 i)^{n / 2}}{(4 \pi t)^{n / 2}} \sum_{j=0}^{\infty} \lambda^{2 j-n} \operatorname{tr}_{F} a(\lambda X)_{j,\{1, \ldots, n\}} t^{j} \tag{2.11}
\end{equation*}
$$

We wish to take the limit $\lambda \rightarrow 0+$, but we are concerned about the coefficients $a(\lambda X)_{j,\{1, \ldots, n\}}$ with $j<n / 2$. But they must be zero since we know that taking the limit $\lambda \rightarrow 0+$ must yield the asymptotic expansion for k_{t}^{0}. (In fact, more can be said as we shall see in Cor. 2.14.) Thus,

$$
\begin{align*}
\operatorname{tr}_{s} k_{t}^{0}(X) & \sim \lim _{\lambda \rightarrow 0+} \frac{(-2 i)^{n / 2}}{(4 \pi t)^{n / 2}} \sum_{j \geqslant n / 2} \lambda^{2 j-n} \operatorname{tr}_{F} a(\lambda X)_{j,\{1, \ldots, n\}} t^{j} \\
& =\frac{(-2 i)^{n / 2}}{(4 \pi)^{n / 2}} \operatorname{tr}_{F} a(0)_{\frac{n}{2},(0,1, \ldots, n)} \tag{2.12}
\end{align*}
$$

2.13 PROOF OF (D). Write the operator 2.9 as

$$
D_{0}^{2}=H+\Omega^{F}(0)
$$

The operators H and $\Omega^{F}(0)$ commute with each other. So $e^{-t D_{0}^{2}}=e^{-t H} e^{-t \Omega^{F}}$, and the heat kernel of D_{0}^{2} is $k_{t}^{0}=h_{t} e^{-t \Omega^{F}}$ where h_{t} is the heat kernel of H. The operator H is what is called the "generalized harmonic oscillator". Its heat kernel h_{t} is known [5, Prop.12.25]:

$$
h_{t}(X)=\frac{1}{(4 \pi t)^{n / 2}} \operatorname{det}^{\frac{1}{2}}\left(\frac{t \Omega^{M} / 2}{\sinh t \Omega^{M} / 2}\right) e^{-\frac{1}{4 t} g\left(\frac{t \Omega^{M}}{2} \operatorname{coth} \frac{t \Omega^{M}}{2} X, X\right)}
$$

Remark. Note that the final quantity in Eq. (2.12) is the integrand in Eq. (1.17). So we have obtained a workaround in calculating the integrand for ind ${ }_{s} D$, using the rescaled heat kernel k_{t}^{λ} instead of the original heat kernel k_{t}. The key relationship in this vein is that

$$
\lim _{t \rightarrow 0+} \operatorname{tr}_{s} k_{t}(0)=\lim _{\lambda \rightarrow 0+} \operatorname{tr}_{s} k_{t}^{\lambda}(X)
$$

This follows from applying Cor. 2.14 below to the asymptotic expansion 1.14 of the original heat kernel k_{t}.
2.14 COROLLARY. Let $a(X)_{j, I}$ be the coefficients in the asymptotic expansion 1.13. Then

$$
\begin{equation*}
a(0)_{j, I}=0 \quad \text { if } \quad j<\frac{|I|}{2} \tag{2.15}
\end{equation*}
$$

Proof. By Eq. (2.3),

$$
\begin{equation*}
k_{t}^{0}(0)=h_{t}(0) e^{-t \Omega^{F}}=\frac{1}{(4 \pi t)^{n / 2}} \operatorname{det}^{\frac{1}{2}}\left(\frac{t \Omega^{M} / 2}{\sinh t \Omega^{M} / 2}\right) e^{-t \Omega^{F}} \tag{2.16}
\end{equation*}
$$

Note that this is an element of $\left(\wedge T_{y} M\right) \otimes \operatorname{End}(E)$ by Eq. (1.19). Taking the power series expansion with respect to t,

$$
\begin{equation*}
k_{t}^{0}(0)=\frac{1}{(4 \pi t)^{n / 2}} \sum_{j=0}^{\infty} P_{j}\left(\frac{1}{2} \Omega^{M},-\Omega^{F}\right) t^{j} \tag{2.17}
\end{equation*}
$$

where P_{j} is a homogeneous polynomial of degree j. The above is the asymptotic expansion for $k_{t}^{0}(0)$. It has to be equal to, under the limit of $\lambda \rightarrow 0+$, the asymptotic expansion for k_{t}^{λ}. By the expansion 1.24,

$$
\begin{equation*}
k_{t}^{\lambda}(0) \sim \frac{1}{(4 \pi t)^{n / 2}} \sum_{j, I} \lambda^{2 j-|I|} a(0)_{j, I} e_{I} t^{j} \tag{2.18}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
P_{j}\left(\frac{1}{2} \Omega^{M},-\Omega^{F}\right)=\lim _{\lambda \rightarrow 0+} \sum_{I} \lambda^{2 j-|I|} a(0)_{j, I} e_{I} \tag{2.19}
\end{equation*}
$$

Since the left-hand side is well-defined, the limit in the right-hand side must converge. Hence, $a(0)_{j, I}=0$ for $j<\frac{|I|}{2}$.

Remark. In retrospect, Eq. (2.19) can now be written as

$$
\begin{equation*}
P_{j}\left(\frac{1}{2} \Omega^{M},-\Omega^{F}\right)=\sum_{|I|=2 j} a(0)_{j, I} e_{I} \tag{2.20}
\end{equation*}
$$

Since $|I| \leqslant n$, we have

$$
P_{j} \neq 0 \quad \text { only if } \quad j=0,1, \ldots, n / 2
$$

So Eq. (2.17) can be rewritten as

$$
\begin{equation*}
k_{t}^{0}(0)=\frac{1}{(4 \pi t)^{n / 2}} \sum_{j=0}^{n / 2} P_{j} t^{j} . \tag{2.21}
\end{equation*}
$$

2.22 PROOF OF (E). Taking the super-trace on both sides of Eq. (2.21), we get

$$
\begin{equation*}
\operatorname{tr}_{s} k_{t}^{0}(0)=\frac{1}{(4 \pi)^{n / 2}} \operatorname{tr}_{s} P_{n / 2}\left(\frac{1}{2} \Omega^{M},-\Omega^{F}\right)=\frac{(-2 i)^{n / 2}}{(4 \pi)^{n / 2}} \operatorname{tr}_{F} a(0)_{\frac{n}{2},(0,1, \ldots, n)} \tag{2.23}
\end{equation*}
$$

where we have used Eq. (2.20) and Eq. (1.15). Comparing Eqs. (2.16) and (2.17), we see that $P_{n / 2}\left(\frac{\Omega^{M}}{2},-\Omega^{F}\right)$ is the n-form part of

$$
\operatorname{det}^{\frac{1}{2}}\left(\frac{\Omega^{M} / 2}{\sinh \Omega^{M} / 2}\right) e^{-q \Omega^{F}}
$$

We want the super-trace of this. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the local coframe for the cotangent bundle dual to the orthonormal frame e_{1}, \ldots, e_{n} for TM. Note that

- the power series of $\operatorname{det}^{\frac{1}{2}}\left(\frac{\Omega^{M} / 2}{\sinh \Omega^{M} / 2}\right)$ consists of terms such as $p \alpha_{I}$ where p is a smooth function;
- the power series of $e^{-q \Omega^{F}}$ consists of terms such as $A \alpha_{I^{\prime}}$ where A is a matrix valued smooth function.

When the two terms $p \alpha_{I}, A \alpha_{I^{\prime}}$ are multiplied, the super-trace of the product is locally of the form

$$
\operatorname{tr}_{s}\left(p A \alpha_{I} \wedge \alpha_{I^{\prime}}\right)=\operatorname{tr}_{F}(p A) \operatorname{tr}_{\mathbb{S}}\left(\alpha_{I} \wedge \alpha_{I^{\prime}}\right)=p \operatorname{tr}_{F}(A) \operatorname{tr}_{\mathbb{S}}\left(\alpha_{I} \wedge \alpha_{I^{\prime}}\right)
$$

We are only concerned when $|I|+\left|I^{\prime}\right|=n$, in which case the above quantity is equal to

$$
(-2 i)^{n / 2} p \operatorname{tr}_{F}(A)
$$

Multiplying the volume form vol $=\alpha_{1} \wedge \cdots \wedge \alpha_{n}$ to this gives us $(-2 i)^{n / 2}\left(p \alpha_{I}\right)\left(\operatorname{tr}_{F}(A) \alpha_{I^{\prime}}\right)$. Our conclusion is that

$$
\begin{equation*}
\operatorname{tr}_{s} P_{n / 2}\left(\frac{1}{2} \Omega^{M},-\Omega^{F}\right) \mathrm{vol}=\left.(-2 i)^{n / 2} \operatorname{det}^{\frac{1}{2}}\left(\frac{\Omega^{M} / 2}{\sinh \Omega^{M} / 2}\right) \operatorname{tr}_{F} e^{-\Omega^{F}}\right|_{n \text {-form }} \tag{2.24}
\end{equation*}
$$

This is just the product of the characteristic classes

$$
\hat{A}(M)=\operatorname{det}^{\frac{1}{2}}\left(\frac{\Omega^{M} / 4 \pi i}{\sinh \Omega^{M} / 4 \pi i}\right)
$$

and

$$
\operatorname{ch}(F)=\operatorname{tr}_{F}\left(e^{-\Omega^{F} / 2 \pi i}\right)
$$

up to a scalar factor. Indeed, making the substitution $\Omega^{M} \mapsto \Omega^{M} / 2 \pi i$ and $\Omega^{F} \mapsto$ $\Omega^{F} / 2 \pi i$ in Eq. (2.24), we get

$$
\operatorname{tr}_{s} P_{n / 2}\left(\frac{1}{4 \pi i} \Omega^{M},-\frac{1}{2 \pi i} \Omega^{F}\right)=\left.(-2 i)^{n / 2} \hat{A}(M) \wedge \operatorname{ch}(F)\right|_{n \text {-form }}
$$

Because $P_{n / 2}$ is a homogeneous polynomial of degree j,

$$
P_{n / 2}\left(\frac{1}{2} \Omega^{M},-\Omega^{F}\right)=(2 \pi i)^{n / 2} P_{n / 2}\left(\frac{1}{4 \pi i} \Omega^{M},-\frac{1}{2 \pi i} \Omega^{F}\right)
$$

Therefore,

$$
\operatorname{tr}_{s} P_{n / 2}\left(\frac{1}{2} \Omega^{M},-\Omega^{F}\right) \mathrm{vol}=(-2 i)^{n / 2}(2 \pi i)^{n / 2} \hat{A}(M) \wedge \operatorname{ch}\left(-\Omega^{F}\right)
$$

This result, together with Eq. (2.23), proves Eq. (2.4).

REFERENCES

[1] N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original. MR2273508 (2007m:58033)
[2] E. Getzler, A short proof of the local Atiyah-Singer index theorem, Topology 25 (1986), no. 1, 111-117, DOI 10.1016/0040-9383(86)90008-X. MR836727 (87h:58207)
[3] D. S. Freed, Geometry of Dirac Operators, unpublished. Downloadable at http://www.ma utexas.edu/users/dafr/.
[4] H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1 (1967), no. 1, 43-69. MR0217739 (36 \#828)
[5] J. Roe, Elliptic operators, topology and asymptotic methods, 2nd ed., Pitman Research Notes in Mathematics Series, vol. 395, Longman, Harlow, 1998. MR1670907 (99m:58182)

